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Wigner-Dyson statistics for a class of integrable models

L. Benet!?3F. Leyvraz! and T. H. Seligmah?®
Centro de Ciencias Bicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico
2Centro Internacional de Ciencias AC, Apartado Postal 6-101, 62131 Cuernavaca, Morelos, Mexico
SLPTMS, UniversiteParis-Sud, Centre Scientific d’Orsay, tBaent 100, F-91405 Orsay Cedex, France
(Received 6 June 2003; published 21 October 2003

We construct an ensemble of second-quantized Hamiltonians with two bosonic degrees of freedom, whose
members display with probability one Gaussian orthogonal ense(@d) or Gaussian unitary ensemble
(GUE) statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely, the boson num-
ber, and thus are integrable. To construct this ensemble we use some “reverse engineering” starting from the
fact thatn bosons in a two-level system with random interactions have an integrable classical limit by the old
Heisenberg association of boson operators to actions and angles. By chooskimpa@y random interaction
and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the
example.
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Recently, there has been considerable interest in spinlesgmving chosen an unfolddtked spectrum of given lengtN
n-boson systems witk-body random interactiond,,2], both  generated via the diagonalization of a matrix taken from the
for degeneratd3] and nondegeneratgt,5] single-particle  GOE, they fit a one-dimensional potential, the spectrum of
levels. In particular, anomalous statistics for the two-levelwhich coincides with the above spectrum for its fisval-
system have been understood from the fact that these sydes. The main difference between their work and ours is that
tems are integrablgs]. The two-level ensemble corresponds We display explicitly an ensemble of integrable Hamiltonians
to a time-independent two degrees of freedom system, in theaving a GOE spectrum.
sense that creation and annihilation operators for the two The Hamiltonian in second quantization is
single-particle levels are canonical operators for the system.

The second integral of motion corresponds to the conserva- ko
tion of the number of bosons. The Hamiltonian is a function A= 2 St (bI)s(bZ)k_S(bl)t(bz)k_t- (1)
of the creation and annihilation operators, whose precise st=0 Nst

form depends on the question whether we have two-body
interactions or more complicated many-body interactionsHere, bl
The nur_nber o(_randon) coefﬂments_ln this model increases (i=1.2), b; destroys it, and th&-body matrix elements.,
quadratically with the rank of the interaction. A classical correspond to a GOE or a GUR]. The number operaitor
Hamiltonian can formally be written for any number of par- ~ + . o
ticles but, in fact, only for large particle number the quantumn:b1b1+b2b2 commutes V.V'th thg Hamiltonian |'ndepgn—
problem reaches the classical linfit,8]. Thus the boson dently of the rankk of the interaction. The combinatorial

_ 172 ; H
number plays the role of an action. For fixed particle number actors Ns=[s!(k—s)!t!(k—t)!]"* in Eq. (1) are intro-

the model can be reduced to a Hamiltonian of one degree §uced in order to havexactlya GOE or GUE Hamiltonian
freedom with the number of bosons appearing as a paran{o’ "=k, wheren is the number of bosonfl,2]. For the
eter. two-level system, the dimension of Hilbert spaceNs-n

In this paper we shall consider a different lamyémit for +1. .
the two-level system. Our model consists in choosing the The classical Hamiltonian is obtained as follo\@s19]: H
rank of the interaction equal to the particle numbesn. is symmetrized with respect to the ordering of the creation
Hence the Hamiltonian changes for different values of theand annihilation operators. This permits a correct assignment
particle number. This choice, by definition of the ensemble0f the zero-point energy and therefore a one-to-one classical-
directly leads to a Gaussian orthogonal ensend®®E) or  quantum energy comparison. Then, we use Heisenberg semi-
Gaussian unitary ensembl6UE) matrix [9]. We then con-  classical ruleg7]
sider the limit of large particle number. Clearly, we will have
an ensemble of systems which have GOE or GUE statistics T2 -y 2 i
with probability 1[10], while being integrable in a well- bj—li"expidy), b= IjTexp—1d). &
defined limit of large actions. This represents an important
caveat concerning the idea that Wigner-Dyson statistics are Formally, the classical Hamiltonian can be writtenths
characteristic of classical chaotic systems. Note that this has Ho+ V. The unperturbed Hamiltoniad,, which includes
no bearing on the fairly well established quantum chaos cona constant associated with the zero-point energy correction,
jecture[11-17, which establishes that classical chaos im-depends only upon the actiohgsandl,; the residual inter-
plies typically Wigner-Dyson statistics. In a similar vein, Wu actionV depends also on the anglés and ¢,. These terms
et al [18] have performed the following calculation: after are explicitly given by

creates a spinless boson in single-particle lgvel
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In these equation&details of their derivation will be given 0
elsewherg Py(l,s) is a polynomial of degreeon | defined =3
as (s=t=0),

t FIG. 1. Phase-space structure of a specific realization of the
P(l ‘S):-Hl [1-(s—i)]. (5) reduced Hamiltonian fok=n=30.
|:

) , Let us now qualitatively understand why this happens.

Here we have assumed real matrix elemenfs which are o this purpose we investigate the structure of the phase
independent random variables, Gaussian distributed Wltgpace of a typical member of the ensemble for fireel. A
zero mean and variance given bysws o =dss8w  Ppoincafesurface of the two degrees of freedom system con-
+ Oy b, With the overline denoting ensemble average.siycted for constart=n+ 1 is equivalent to a contour plot
Hence thek-body interaction matrices form a GOE. The ot {he reduced one-dimensional Hamiltonian. Fixitg
analogous case for the GUE is obtained by replacing in Eqnakes for a compact phase space in the reduced coordinates
(4) vs by Jvs,| and introducing a phases in the cosine  , andJ defined above. The volume correspondsitel as
functon. _ we normalized to one quantum state per unit cell. The num-

The Hamiltonian is written as a polynomial of the tWo per of random coefficients entering in the Hamiltonian grows
actions with random coefficients, and cosines of the differqyadratically withk. The equations of motion then contain
ence of the two angles. The invariant is given Ky= 1 1 polynomials inJ andK — J (of degree up t&=n) multiplied
+1,=n+1 which reflects the translational symmetry of the by sines or cosines of multiples gf In this case, the degree
interaction yvith respect to the angles. Again we can test thes the polynomials sets-n? as the upper limit for the total
corresponding Poisson brack¢®). This form displays ex- ymper of fixed pointgstable and unstableWhile a more
plicitly that we deal with an integrable two degrees of free-yracise estimate for their number is difficult to establish, our
dom problem. If we fix the invariant, i.e., the particle number,, merical results show that the fixed points proliferate more
n, we can reduce the H_am|lton|an to one degree of fre(_adommpid|y thann, and come close to the upper bound. The typi-
The quantum Hamiltonian acts on a Hilbert space of dimengy| phase-space portrait will therefore consist of elliptic is-
sionn+1, which is the number of ways we can distribute |anqgs surrounded by separatrices in a complicated mesh. In
the n bosons in the two single-particle levels. Formally, this Fig. 1 we illustrate the phase-space structure of a member of
corresponds to the so-called "polyads” for algebraic Hamil-iha ensemble fok=n=30. The tori whose action satisfies

tonians in molecular systeni$9]. The reduced Hamiltonian o Ejnstein-Brillouin-Kelle EBK) quantization condition
is obtained by performing the canonical transformation de-

fined by the generating functioW=K ¢+ J(¢do— ¢41). The
new actionskK and J and their corresponding canonically

1 1
conjugated angleg and ¢ are related to the old variables by S(E)= 2 fﬁ J(E)dy= e ' @)

aj
ni+z

l,=K-=J, 1,=], (6a)
define implicitly theith energy leveE; . Here,n; is an inte-
X=b1, Y=¢or— 1. (6b)  ger anda; is the Maslov index of the orbit. Note that there is
a priori no monotonic dependence of the value of the action
Substituting the new variables in Eq8) and(4), and fixing  as a function of energy for the reduced Hamiltonian. That is,
K yields explicitly the reduced Hamiltonian. for a given energy two or more distinct invariant tori may
We now have established the main point of the paper: iexist in different regions of phase space; each of these tori
we considek=n, by construction the quantum Hamiltonian may have a different value of the corresponding action.
(1) coincides with a GOH1,3]. Each member of the en- As mentioned above, the number of stable and unstable
semble is associated, in the limit of largé=k), to a clas- fixed points proliferates very rapidly for growig=n. This
sical Hamiltonian with one effective degree of freedom. Thisis a consequence of the many-body character of the interac-
defines the ensemble of integrable Hamiltonians. tion Vin Eq. (4). In particular, in the limit we consider, this
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number grows much faster thar-% ~1; this implies that the embedded ensembl¢3] cease to apply in this case by the
phase-space volume surrounding each stable fixed poiisiame line of reasoning, and therefore we recover the standard
shrinks forn=k— . ergodicity of the GOH10].

For one degree of freedom systems in the largémit Finally, we consider the extension to the GUE case. We
with k fixed the spectrum is constructed from sequences ofecall that in action and angle variables of the harmonic os-
levels obtained by torus quantization around the elliptic fixecCillator, time-reversal invariance is tested by the invariance
points, i.e., most tori which satisfy the EBK condition can be©f the Hamiltonian under the transformatigh— — ¢; (for
uniquely assigned to one elliptic fixed point. The spectrum id =1,2). AS mentioned above, when considering complex
thus a superposition of picket-fen¢equidistant sequences KPody matrix elements, Ed4) requires certain modifica-
of levels as reported in Ref3] for small values ofk. For tions; namely,vS,! IS replaceq by its modulugs,| and the_
fixed (sufficiently large values ofk we expect a Poisson phas_eSwS,t are. mtroduqed in the argument of the cosine
spectrum to arise on short length scales. This expectation cht!ons. The introduction of the phases, n the. cosine
based on the fact that WKB theory yields a superposition o unctions of Eq.(4) breaks the time-reversal invariance.

. y - . . ) Summarizing, we have defined an ensemble of integrable
mggy picket-fenceequidistant spectra with different spac Hamiltonians of two degrees of freedom, or equivalently, an

In contrast, in the present cask=n) we have~n? el- ensemble of one degree of freedom Hamiltonians by fixing

L . the number of bosons In the limitn=k—«, each member
liptic fixed points and onlyn+1 energy levels. Therefore, a , ’ .
stable periodic orbit that fulfills the EBK conditiof), in- Ogttg‘; (gi‘:gcaedmee”niﬁg‘rbg 'tf]é“g%’gdof’gﬁtg %;?eefgriarltr:e
stead of surrounding an elliptic point, has to accommodat ! ' '

and explore more extended regions in phase space, comi %ctuation properties of its eiger_lvalues follow the predic-
close to the separatrix associated with many different untons of random matrix thqry. Thls.resqlt can be mterpreted
stable fixed points. Stated in a different way, while the peri-In two ways. First, the limiting Ham|lton_|a|_1 IS considered to
odic orbits of the Hamiltonian are strictly stable, wave pack-be a classmal one, or second, such_a I|m|_t IS not ac_cept_ed as
ets started on initial conditions separated by a distance of t glaSS|caI one. In e|th(_ar case, for th.'s family of H_am|lt0n|f':1ns
order# ¥2—n 12 will sample very different regions of phase |gner_—Dyson fluctuations do not imply chaos in classical
space. This coarse graining will effectively mimic unstabledynamlcs'

motion. This fact makes plausible that we do not obtain a We acknowledge financial support by the projects
smooth spectrum that can be unfolded to yi&dperposi- DGAPA (UNAM) IN-109000, IN-112200 and CONACyYT
tions of) picket-fence spectra. Indeed, we find random matrix32173-E. L.B. was supported by the PSPA-DGAPA program
spectral fluctuations. Note that the results on the nonergodi@JNAM) and thanks O. Bohigas for discussions and the kind
behavior in the dense limitk(fixed) of the bosonid-body  hospitality at the LPTMSOrsay.
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