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Wigner-Dyson statistics for a class of integrable models

L. Benet,1,2,3 F. Leyvraz,1 and T. H. Seligman1,2

1Centro de Ciencias Fı´sicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico
2Centro Internacional de Ciencias AC, Apartado Postal 6-101, 62131 Cuernavaca, Morelos, Mexico

3LPTMS, Universite´ Paris-Sud, Centre Scientific d’Orsay, Baˆtiment 100, F-91405 Orsay Cedex, France
~Received 6 June 2003; published 21 October 2003!

We construct an ensemble of second-quantized Hamiltonians with two bosonic degrees of freedom, whose
members display with probability one Gaussian orthogonal ensemble~GOE! or Gaussian unitary ensemble
~GUE! statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely, the boson num-
ber, and thus are integrable. To construct this ensemble we use some ‘‘reverse engineering’’ starting from the
fact thatn bosons in a two-level system with random interactions have an integrable classical limit by the old
Heisenberg association of boson operators to actions and angles. By choosing ann-body random interaction
and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the
example.
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Recently, there has been considerable interest in spin
n-boson systems withk-body random interactions@1,2#, both
for degenerate@3# and nondegenerate@4,5# single-particle
levels. In particular, anomalous statistics for the two-le
system have been understood from the fact that these
tems are integrable@6#. The two-level ensemble correspon
to a time-independent two degrees of freedom system, in
sense that creation and annihilation operators for the
single-particle levels are canonical operators for the syst
The second integral of motion corresponds to the conse
tion of the number of bosons. The Hamiltonian is a functi
of the creation and annihilation operators, whose prec
form depends on the question whether we have two-b
interactions or more complicated many-body interactio
The number of~random! coefficients in this model increase
quadratically with the rankk of the interaction. A classica
Hamiltonian can formally be written for any number of pa
ticles but, in fact, only for large particle number the quantu
problem reaches the classical limit@7,8#. Thus the boson
number plays the role of an action. For fixed particle numb
the model can be reduced to a Hamiltonian of one degre
freedom with the number of bosons appearing as a par
eter.

In this paper we shall consider a different large-n limit for
the two-level system. Our model consists in choosing
rank of the interaction equal to the particle number,k5n.
Hence the Hamiltonian changes for different values of
particle number. This choice, by definition of the ensemb
directly leads to a Gaussian orthogonal ensemble~GOE! or
Gaussian unitary ensemble~GUE! matrix @9#. We then con-
sider the limit of large particle number. Clearly, we will hav
an ensemble of systems which have GOE or GUE statis
with probability 1 @10#, while being integrable in a well-
defined limit of large actions. This represents an import
caveat concerning the idea that Wigner-Dyson statistics
characteristic of classical chaotic systems. Note that this
no bearing on the fairly well established quantum chaos c
jecture @11–17#, which establishes that classical chaos i
plies typically Wigner-Dyson statistics. In a similar vein, W
et al. @18# have performed the following calculation: afte
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having chosen an unfoldedfixedspectrum of given lengthN
generated via the diagonalization of a matrix taken from
GOE, they fit a one-dimensional potential, the spectrum
which coincides with the above spectrum for its firstN val-
ues. The main difference between their work and ours is
we display explicitly an ensemble of integrable Hamiltonia
having a GOE spectrum.

The Hamiltonian in second quantization is

Ĥ5 (
s,t50

k
vs,t

Ns,t
~b1

†!s~b2
†!k2s~b1! t~b2!k2t. ~1!

Here, bj
† creates a spinless boson in single-particle levej

( j 51,2), bj destroys it, and thek-body matrix elementsvs,t
correspond to a GOE or a GUE@3#. The number operato
n̂5b1

†b11b2
†b2 commutes with the Hamiltonian indepen

dently of the rankk of the interaction. The combinatoria
factors Ns,t5@s!(k2s)! t!(k2t)! #1/2 in Eq. ~1! are intro-
duced in order to haveexactlya GOE or GUE Hamiltonian
for n5k, wheren is the number of bosons@1,2#. For the
two-level system, the dimension of Hilbert space isN5n
11.

The classical Hamiltonian is obtained as follows@6,19#: Ĥ
is symmetrized with respect to the ordering of the creat
and annihilation operators. This permits a correct assignm
of the zero-point energy and therefore a one-to-one class
quantum energy comparison. Then, we use Heisenberg s
classical rules@7#

bj
†→I j

1/2exp~ if j !, bj→I j
1/2exp~2 if j !. ~2!

Formally, the classical Hamiltonian can be written asH
5H01V. The unperturbed HamiltonianH0, which includes
a constant associated with the zero-point energy correct
depends only upon the actionsI 1 and I 2; the residual inter-
actionV depends also on the anglesf1 andf2. These terms
are explicitly given by
©2003 The American Physical Society01-1
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H05(
s50

k
vs,s

Ns,s
PsS I 12

1

2
,sD Pk2sS I 22

1

2
,k2sD , ~3!

V5(
s.t

vs,t~ I 1I 2!(s2t)/2

2Ns,t
cos@~s2t !~f12f2!#FPtS I 12

1

2
,sD

1PtS I 12
1

2
,t D GFPk2sS I 22

1

2
,k2sD

1Pk2sS I 22
1

2
,k2t D G . ~4!

In these equations~details of their derivation will be given
elsewhere!, Pt(I ,s) is a polynomial of degreet on I defined
as (s>t>0),

Pt~ I ,s!5)
i 51

t

@ I 2~s2 i !#. ~5!

Here we have assumed real matrix elementsvs,t , which are
independent random variables, Gaussian distributed w
zero mean and variance given byvs,tvs8,t85dss8d tt8
1dst8d ts8 , with the overline denoting ensemble averag
Hence thek-body interaction matrices form a GOE. Th
analogous case for the GUE is obtained by replacing in
~4! vs,t by uvs,tu and introducing a phasevs,t in the cosine
function.

The Hamiltonian is written as a polynomial of the tw
actions with random coefficients, and cosines of the diff
ence of the two angles. The invariant is given byK5I 1
1I 25n11 which reflects the translational symmetry of t
interaction with respect to the angles. Again we can test
corresponding Poisson brackets@6#. This form displays ex-
plicitly that we deal with an integrable two degrees of fre
dom problem. If we fix the invariant, i.e., the particle numb
n, we can reduce the Hamiltonian to one degree of freed
The quantum Hamiltonian acts on a Hilbert space of dim
sion n11, which is the number of ways we can distribu
the n bosons in the two single-particle levels. Formally, th
corresponds to the so-called ‘‘polyads’’ for algebraic Ham
tonians in molecular systems@19#. The reduced Hamiltonian
is obtained by performing the canonical transformation
fined by the generating functionW5Kf11J(f22f1). The
new actionsK and J and their corresponding canonical
conjugated anglesx andc are related to the old variables b

I 15K2J, I 25J, ~6a!

x5f1 , c5f22f1 . ~6b!

Substituting the new variables in Eqs.~3! and~4!, and fixing
K yields explicitly the reduced Hamiltonian.

We now have established the main point of the paper
we considerk5n, by construction the quantum Hamiltonia
~1! coincides with a GOE@1,3#. Each member of the en
semble is associated, in the limit of largen(5k), to a clas-
sical Hamiltonian with one effective degree of freedom. T
defines the ensemble of integrable Hamiltonians.
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Let us now qualitatively understand why this happe
For this purpose we investigate the structure of the ph
space of a typical member of the ensemble for fixedn@1. A
Poincare´ surface of the two degrees of freedom system c
structed for constantK5n11 is equivalent to a contour plo
of the reduced one-dimensional Hamiltonian. FixingK
makes for a compact phase space in the reduced coordin
c andJ defined above. The volume corresponds ton11 as
we normalized to one quantum state per unit cell. The nu
ber of random coefficients entering in the Hamiltonian gro
quadratically withk. The equations of motion then conta
polynomials inJ andK2J ~of degree up tok5n) multiplied
by sines or cosines of multiples ofc. In this case, the degre
of the polynomials sets;n2 as the upper limit for the tota
number of fixed points~stable and unstable!. While a more
precise estimate for their number is difficult to establish, o
numerical results show that the fixed points proliferate m
rapidly thann, and come close to the upper bound. The ty
cal phase-space portrait will therefore consist of elliptic
lands surrounded by separatrices in a complicated mesh
Fig. 1 we illustrate the phase-space structure of a membe
the ensemble fork5n530. The tori whose action satisfie
the Einstein-Brillouin-Keller~EBK! quantization condition

S~Ei ![
1

2p R J~Ei !dc5
1

2p S ni1
a i

4 D , ~7!

define implicitly thei th energy levelEi . Here,ni is an inte-
ger anda i is the Maslov index of the orbit. Note that there
a priori no monotonic dependence of the value of the act
as a function of energy for the reduced Hamiltonian. That
for a given energy two or more distinct invariant tori ma
exist in different regions of phase space; each of these
may have a different value of the corresponding action.

As mentioned above, the number of stable and unsta
fixed points proliferates very rapidly for growingk5n. This
is a consequence of the many-body character of the inte
tion V in Eq. ~4!. In particular, in the limit we consider, this

FIG. 1. Phase-space structure of a specific realization of
reduced Hamiltonian fork5n530.
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number grows much faster thann;\21; this implies that the
phase-space volume surrounding each stable fixed p
shrinks forn5k→`.

For one degree of freedom systems in the large-n limit
with k fixed the spectrum is constructed from sequences
levels obtained by torus quantization around the elliptic fix
points, i.e., most tori which satisfy the EBK condition can
uniquely assigned to one elliptic fixed point. The spectrum
thus a superposition of picket-fence~equidistant! sequences
of levels as reported in Ref.@3# for small values ofk. For
fixed ~sufficiently large! values of k we expect a Poisson
spectrum to arise on short length scales. This expectatio
based on the fact that WKB theory yields a superposition
many picket-fence~equidistant! spectra with different spac
ings.

In contrast, in the present case (k5n) we have;n2 el-
liptic fixed points and onlyn11 energy levels. Therefore,
stable periodic orbit that fulfills the EBK condition~7!, in-
stead of surrounding an elliptic point, has to accommod
and explore more extended regions in phase space, co
close to the separatrix associated with many different
stable fixed points. Stated in a different way, while the pe
odic orbits of the Hamiltonian are strictly stable, wave pac
ets started on initial conditions separated by a distance o
order\1/2;n21/2 will sample very different regions of phas
space. This coarse graining will effectively mimic unstab
motion. This fact makes plausible that we do not obtain
smooth spectrum that can be unfolded to yield~superposi-
tions of! picket-fence spectra. Indeed, we find random ma
spectral fluctuations. Note that the results on the nonerg
behavior in the dense limit (k fixed! of the bosonick-body
tt
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embedded ensembles@3# cease to apply in this case by th
same line of reasoning, and therefore we recover the stan
ergodicity of the GOE@10#.

Finally, we consider the extension to the GUE case.
recall that in action and angle variables of the harmonic
cillator, time-reversal invariance is tested by the invarian
of the Hamiltonian under the transformationf j→2f j ~for
j 51,2). As mentioned above, when considering comp
k-body matrix elements, Eq.~4! requires certain modifica
tions; namely,vs,t is replaced by its modulusuvs,tu and the
phasesvs,t are introduced in the argument of the cosi
functions. The introduction of the phasesvs,t in the cosine
functions of Eq.~4! breaks the time-reversal invariance.

Summarizing, we have defined an ensemble of integra
Hamiltonians of two degrees of freedom, or equivalently,
ensemble of one degree of freedom Hamiltonians by fix
the number of bosonsn. In the limit n5k→`, each member
of the ~reduced! ensemble is mapped exactly by the quan
zation onto a member of the GOE or GUE. Therefore,
fluctuation properties of its eigenvalues follow the pred
tions of random matrix theory. This result can be interpre
in two ways. First, the limiting Hamiltonian is considered
be a classical one, or second, such a limit is not accepte
a classical one. In either case, for this family of Hamiltonia
Wigner-Dyson fluctuations do not imply chaos in classic
dynamics.
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